The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique.

نویسندگان

  • Qilin Dai
  • Jinke Tang
چکیده

CoO and Co nanocrystals with cubic crystal structures were prepared by thermal decomposition of cobalt(II) acetate tetrahydrate in a mixture of oleylamine and oleic acid under the protection of nitrogen gas at 300 °C for 2 h. The products of CoO or Co nanocrystals are determined by the relative amount of oleylamine due to its reducibility. The sizes and shapes of CoO or Co can be controlled by the ratio of cobalt : oleylamine : oleic acid due to different binding capabilities of the two capping ligands (oleylamine and oleic acid). A modification of the surface state by surface passivation arising from the capping ligands for CoO nanocrystals leads to the blue shift of the ligand-metal charge transfer (LMCT) absorption. Room temperature ferromagnetism originating from uncompensated surface spins, as well as magnetic moments weakly exchange coupled to the CoO lattice due to defects inside CoO nanoparticles, are observed. The magnetic behaviors of CoO and Co nanoparticles also shed light on the synthesis and the magnetic properties of the antiferromagnetic and ferromagnetic nanomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-functional NaLuF4:Gd3+/Yb3+/Er3+ nanocrystals: hydrothermal synthesis, optical and magnetic properties

Magnetic-fluorescent lanthanide doped sodium lutetium fluoride (NaLuF4:Yb3+/Er3+/Gd3+) nanocrystals were synthesized via facile hydrothermal method by varying concentration of Gd3+. Powder X-ray powder diffraction (PXRD), scanning electron microscopy (SEM),transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), p...

متن کامل

Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application

Objective(s): This paper describes synthesizing of magnetic nanocomposite with co-precipitation method.   Materials and Methods: Magnetic ZnxFe3-xO4 nanoparticles with 0-14% zinc doping (x=0, 0.025, 0.05, 0.075, 0.1 and 0.125) were successfully synthesized by co-precipitation method. The prepared zinc-doped Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron...

متن کامل

Colloidal synthesis of germanium nanocrystals

In this study, colloidal germanium nanocrystals were synthesized by a simple and novel method, and their optical properties were also studied. Polyvinyl alcohol (PVA) as a surface modifier was used to control the optical properties of colloidal Ge nanocrystals. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the various functional groups present in the sample. ...

متن کامل

Effect of Mn low concentration on the optical properties of ZnO nanocrystals

ZnO and ZnO:Mn nanocrystals synthesized via reverse micelle method. The size, band gap, Urbach energy, optical constants and penetration depth of nanocrystals were calculated by UV-vis spectroscopy data. The surface morphology was studied with the use of scanning electron microscope (SEM). Moreover the samples exposed to Gama ray source of 60Co and their thermoluminescence properties...

متن کامل

Room Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles

In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 16  شماره 

صفحات  -

تاریخ انتشار 2013